M1.
(a) more streamlined accept decrease surface area
air resistance is smaller (for same speed)
accept drag for air resistance friction is insufficient
so reaches a higher speed (before resultant force is 0)
ignore reference to mass
(b) (i) 1.7
allow 1 mark for correct method, ie $\frac{5}{3}$
or allow 1 mark for an answer with more than 2 sig figs that rounds to 1.7 or allow 1 mark for an answer of 17
(ii) 7.5
allow 1 mark for correct use of graph, eg $\frac{1}{2} \times 5 \times 3$
(iii) air (resistance)
accept wind (resistance)
drag is insufficient
friction is insufficient

M2. (a) the distance travelled under the braking force
(b) the reaction time will increase
increasing the thinking distance (and so increasing stopping distance) (increases stopping distance is insufficient)
(c) No, because although when the speed increases the thinking distance increases by the same factor the braking distance does not.
eg
increasing from $10 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$ increases thinking distance from 6 m to 12 m but the braking distance increases from 6 m to 24 m
(d) If the sled accelerates the value for the constant of friction will be wrong.
(e) only a (the horizontal) component of the force would be pulling the sled forward
the vertical component of the force (effectively) lifts the sled reducing the force of the surface on the sled
(f) $-u^{2}=2 \times-7.2 \times 22$
award this mark even with 0^{2} and / or the negative sign missing

$$
u=17.7(99)
$$

18
allow 18 with no working shown for 3 marks allow 17.7(99) then incorrectly rounded to 17 for 2 marks

M3.
(a) any two from:

- (acceleration occurs when) the direction (of each capsule) changes
- velocity has direction
- acceleration is (rate of) change of velocity
(b) to(wards) the centre (of the wheel)
(c) the greater the radius / diameter / circumference (of the wheel) the smaller the (resultant) force (required)
accept 'the size' for radiusboth parts required for the mark

M4. (a) (i) longer reaction time accept slower reactions do not accept slower reaction time unless qualified orgreater thinking distance accept greater thinking time orgreater stopping distance accept greater stopping time greater braking distance negates answer
(b) \mathbf{Z}
accept extracting both reaction times correctly for 1 mark(0.6 and 1.4)
or time $=0.8$ (s) for 1 mark accept 0.8×15 for 2 marks accept calculating the distance travelled by car A as 28.5 m or the distance travelled by car B as 40.5 m for $\mathbf{2}$ marks
different force values give a unique / different resistance only scores if \boldsymbol{Z} chosen do not accept force and resistance are (directly) proportional accept answers in terms of why either \boldsymbol{X} or \boldsymbol{Y} would not be best eg
\boldsymbol{X} - same resistance value is obtained for 2 different force values

Page 6

M5. (a) (i) 100 (m)
(ii) stationary
(iii) accelerating
(iv) tangent drawn at $t=45 \mathrm{~s}$
attempt to determine slope
speed in the range $3.2-4.2(\mathrm{~m} / \mathrm{s})$
dependent on 1st marking point
(b) (i) 500000 (J)
ignore negative sign
(ii) $20000(\mathrm{~N})$
ignore negative sign
allow 1 mark for correct substitution, ie $500000=F \times 25$
or their part $(b)(i)=F \times 25$
provided no subsequent step
(iii) (kinetic) energy transferred by heating
to the brakes
ignore references to sound energy
if no other marks scored allow k.e. decreases for 1 mark

M6. (a) (i) distance vehicle travels during driver's reaction time accept distance vehicle travels while driver reacts
(ii) any two from:

- tiredness
- (drinking) alcohol
- (taking) drugs
- speed
- age
accept as an alternative factor distractions, eg using a mobile phone
(b) (i) 320000
allow 1 mark for correct substitution, ie ${ }^{\frac{1}{2}} \times 1600 \times 20^{2}$ provided no subsequent step shown
(ii) 320000 or their (b)(i)
(iii) 40
or

$$
\begin{aligned}
& \frac{\text { their (b)(ii) }}{8000} \text { correctly calculated } \\
& \text { allow } 1 \text { mark for statement work done = KE lost } \\
& \text { or } \\
& \text { allow } 1 \text { mark for correct substitution, ie } \\
& 8000 \times \text { distance }=320000 \text { or their (b)(ii) }
\end{aligned}
$$

(iv) any one from:

- icy / wet roads
accept weather conditions
- (worn) tyres
- road surface
- mass (of car and passengers) accept number of passengers
- (efficiency / condition of the) brakes
(v) (work done by) friction (between brakes and wheel) do not accept friction between road and tyres / wheels
(causes) decrease in KE and increase in thermal energy accept heat for thermal energy accept KE transferred to thermal energy
(c) the battery needs recharging less often accept car for battery
orincreases the range of the car
accept less demand for other fuels or lower emissions or lower fuel costs environmentally friendly is insufficient
as the efficiency of the car is increased accept it is energy efficient
the decrease in (kinetic) energy / work done charges the battery (up)

